CXCL12/CXCR4 signaling-mediated ERK1/2 activation in spinal cord contributes to the pathogenesis of postsurgical pain in rats
نویسندگان
چکیده
Background It has been demonstrated that upregulation of CXCL12 and CXCR4 in spinal cord involves in the pathogenesis of neuropathic, inflammatory, and cancer pain. However, whether CXCL12/CXCR4 signaling contributes to postsurgical pain remains unknown. The aim of the present study is to investigate the role of CXCL12/CXCR4 signaling in the genesis of postsurgical pain and the underlying mechanism. Results Plantar incision in rat hind paw resulted in increased expressions of CXCL12 and CXCR4 in spinal dorsal horn. Double immunofluorescence staining revealed that CXCL12 expressed in neurons and astrocytes, and CXCR4 exclusively co-localized with neuronal cells. Prior administration of AMD3100, a specific antagonist of CXCR4, or CXCL12 neutralizing antibody, intrathecally attenuated plantar incision-induced mechanical allodynia and thermal hyperalgesia. Plantar incision also augmented the phosphorylation of NF-κB p65 in spinal cord. Pre intrathecal (i.t.) injection of PDTC, a specific NF-κB activation inhibitor, alleviated plantar incision-induced postsurgical pain and reduced the expression of CXCL12 in spinal cord. Correlated with the upregulation of CXCL12 and CXCR4, plantar incision also resulted in an increased phosphorylation of extracellular signal-regulated kinase 1/2 and Akt in spinal cord. Prior i.t. administration of AMD3100 prevented extracellular signal-regulated kinase, but not Akt, activation in spinal cord. Rats when given a repetitive i.t. PD98059, a specific extracellular signal-regulated kinase inhibitor, started 30 min before surgery also ameliorate plantar incision-induced mechanical and thermal pain hypersensitivity. Conclusion Our results suggests that plantar incision-induced activation of NF-κB signaling may mediate upregulation of CXCL12 in spinal cord, and CXCL12/CXCR4 signaling via extracellular signal-regulated kinase activation contributes to the genesis of postsurgical pain.
منابع مشابه
Crosstalk between astrocytic CXCL12 and microglial CXCR4 contributes to the development of neuropathic pain
BACKGROUND Chemokine axis chemokine C-X-C motif ligand 12/C-X-C chemokine receptor type 4 (CXCL12/CXCR4) is an emerging pain modulator, but mechanisms for its involvement in neuropathic pain remain unclear. Here, we aimed to study whether CXCL12/CXCR4 axis modulated the development of neuropathic pain via glial mechanisms. In this study, two mouse models of neuropathic pain, namely partial scia...
متن کاملCXCR4 antagonist AMD3100 elicits analgesic effect and restores the GlyRα3 expression against neuropathic pain
OBJECTIVE Chemokine CXCL12 and its receptor CXCR4 have been reported to play a critical role in neurogenesis and neuronal differentiation. Recently, some reports have implicated this chemokine signaling in the pathogenesis of many kinds of pain. However, its role in neuropathic pain (NP) is still largely unclear. This study explored the distribution and function of CXCR4 in spinal cord (SC) dor...
متن کاملDown-Regulation of CXCL12/CXCR4 Expression Alleviates Ischemia-Reperfusion-Induced Inflammatory Pain via Inhibiting Glial TLR4 Activation in the Spinal Cord
Toll-like receptor 4 (TLR4) is important for the pathogenesis of inflammatory reactions and the promotion of pain processing after ischemia/reperfusion (IR) in spinal cord. Recently, C-X-C chemokine ligand 12 (CXCL12) and its receptor, C-X-C chemokine receptor 4 (CXCR4), were demonstrated to be simultaneously critical for inflammatory reactions, thereby facilitating glial activation. However, w...
متن کاملActivation of neurotrophins in lumbar dorsal root probably contributes to neuropathic pain after spinal nerve ligation
Objective(s): Neurotrophins (NTs) exert various effects on neuronal system. Growing evidence indicates that NTs are involved in the pathophysiology of neuropathic pain. However, the exact role of these proteins in modulating nociceptive signaling requires being defined. Thus, the aim of this study was to evaluate the effects of spinal nerve ligation (SNL) on NTs activation in the lumbar dorsal ...
متن کاملGabapentin Effects on PKC-ERK1/2 Signaling in the Spinal Cord of Rats with Formalin-Induced Visceral Inflammatory Pain
Currently, the clinical management of visceral pain remains unsatisfactory for many patients suffering from this disease. While preliminary animal studies have suggested the effectiveness of gabapentin in successfully treating visceral pain, the mechanism underlying its analgesic effect remains unclear. Evidence from other studies has demonstrated the involvement of protein kinase C (PKC) and e...
متن کامل